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Abstract

We introduce an optimal bounded perfectly matched layer (PML) technique by choosing a particular absorbing func-
tion with unbounded integral. With this choice, spurious reflections are avoided, even though the thickness of the layer is
finite. We show that such choice is easy to implement in a finite element method and overcomes the dependency of param-
eters for the discrete problem. Finally, its efficiency and accuracy are illustrated with some numerical tests.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The first problem to be tackled for the numerical solution of any scattering problem in an unbounded
domain is to truncate the computational domain without perturbing too much the solution of the original
problem. In an ideal framework, the method should satisfy, at least, three properties: efficiency, easiness of
implementation, and robustness.

Several numerical techniques have been developed with this purpose: boundary element methods, infinite
element methods, Dirichlet-to-Neumann operators based on truncating Fourier expansions, absorbing bound-
ary conditions, etc. The potential advantages of each of them have been widely studied in the literature (see,
for instance, [2,16,24,29], and [19] for a classical review on this subject).

We focus our attention on the last mentioned technique: local absorbing boundary conditions (ABCs) can
be used to preserve the computational efficiency of the numerical method. Those of Bayliss and Turkel [5],
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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Engquist and Majda [17], and Feng [18] are among the most widely used. However, in spite of the simple
implementation of lowest order ABCs, good accuracy is only achieved for higher order ones [31], because
these conditions are not fully non-reflecting on the truncated boundary of the computational domain. As a
consequence, high accuracy using ABCs leads to a substantial computational cost and increases the difficulty
of implementation. Recently, a promising way has been open: high order ABCs not involving high derivatives
(see [20,25]).

An alternative approach to deal with the truncation of unbounded domains is the so-called perfectly

matched layer (PML) method, which was introduced by Berenger [8–10]. It is based on simulating an absorb-
ing layer of anisotropic damping material surrounding the domain of interest, like a thin sponge which
absorbs the scattered field radiated to the exterior of this domain. This method is known as ‘perfectly matched’
because the interface between the physical domain and the absorbing layer does not produce spurious reflec-
tions inside the domain of interest.

This method has been applied to different problems. It was initially settled for Maxwell’s equations in elec-
tromagnetism [7,8] and subsequently used for the scalar Helmholtz equation [21,30,33], advective acoustics
[1,6,23], shallow water waves [28], elasticity [4,15], poroelastic media [34], and other hyperbolic problems
(see for instance [27] among many other papers). We focus our attention on wave propagation time-harmonic
scattering problems in linear acoustics, i.e., on the scalar Helmholtz equation.

In practice, since the PML has to be truncated at a finite distance of the domain of interest, its external
boundary produces artificial reflections. Theoretically, these reflections are of minor importance because of
the exponential decay of the acoustic waves inside the PML. In fact, for Helmholtz-type scattering problems,
Lassas and Somersalo [26] proved, using boundary integral equation techniques, that the approximate solu-
tion obtained by the PML method converges exponentially to the exact solution in the computational domain
as the thickness of the layer goes to infinity. This result was generalized by Hohage et al. [22] using techniques
based on the pole condition. Similarly, Bécache et al. [6] proved an analogous result for the convected Helm-
holtz equation.

Once the problem is discretized, the approximation error typically becomes larger. Increasing the thickness
of the PML may be a remedy, but not always available because of computational cost. An alternative usual
choice to achieve low error levels is to take larger values for the absorption coefficients in the layer. However,
Collino and Monk [14] showed that this methodology may produce an increasing error in the discretized prob-
lem. Consequently, an optimization problem arises: given a data set and a mesh, to choose an optimal absorb-
ing function (i.e., a variable absorption coefficient) to minimize the error. In this framework, Asvadurov et al.
[3] proposed a pure imaginary stretching to optimize the error of the PML method. They recovered exponen-
tial error estimates using finite-difference grid optimization. However, to the best of the authors’ knowledge,
the optimization problem is still open in that there is no optimal criterion to choose the absorbing function
independently of data and meshes.

We have proposed in [11] an alternative procedure to avoid this drawback: to use an absorbing function
with unbounded integral on the PML. We have shown in that reference that this leads to a theoretically exact
bounded PML. More precisely, this kind of absorbing functions on a circular annular layer allows recovering
of the exact solution of the time-harmonic scattering problem in the domain of interest, up to discretization
errors, even though the thickness of the layer is finite.

In this paper, we consider Cartesian perfectly matched layers. We report numerical evidence that allows us
to choose a particularly convenient non-integrable absorbing function. This function only depends on the
sound speed of the fluid. We show that this choice leads to a robust PML method, easy to implement in a
finite element code. We assess the efficiency of our choice by comparing it with classical bounded absorbing
functions in test problems. We also report the numerical results obtained in some realistic examples.

The outline of this paper is as follows. In Section 2 we consider a simple problem: the propagation of plane
waves with oblique incidence in a two-dimensional unbounded domain. We show that a PML method based
on a non-integrable absorbing function allows recovering the exact solution in the domain of interest. In Sec-
tion 3 we recall the classical two-dimensional scattering problem with Cartesian perfectly matched layers. In
Section 4 we describe a finite element method to solve this problem. We show that for the resulting finite ele-
ment problem to be well posed, it is necessary to impose further constraints on the absorbing function. In Sec-
tion 5 we report the results of some numerical tests which allow us to choose the most convenient
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non-integrable absorbing function. In Section 6 we show the advantages of our choice as compared with a
classical PML based on a quadratic absorbing function. In Section 7, we report the numerical results obtained
with our PML technique applied to some realistic wave propagation problems. Finally, in Appendix A, we
show how the element matrices can be computed either by explicit integration or by means of quadrature
rules.

2. Plane acoustic waves with oblique incidence

First, we consider a simple problem which will provide valuable information for the design of an efficient
PML method: the propagation of two-dimensional acoustic plane waves with oblique incidence.

Consider the following time-harmonic problem posed in the right-half space:
Dp þ k2p ¼ 0; x > 0;

pð0; yÞ ¼ eiky y ;

lim
x!þ1

op
ox � ikxp
� �

¼ 0;

8>><
>>:

ð2:1Þ
where the unknown p is the amplitude of the pressure wave, k = x/c is the wave number, with x being the
angular frequency of the waves and c the sound speed of the fluid. Moreover, kx = kcosh and ky = k sinh, with
h being the incidence angle. The solution of this problem is the plane wave
pðx; yÞ ¼ eiðkxxþky yÞ:
We introduce a PML in the vertical strip a < x < a*, to truncate the unbounded domain in the x-direction (see
Fig. 1). The strip 0 < x < a is the so called ‘physical domain’, where we are interested in computing the solu-
tion of problem (2.1).

We consider a variable absorption coefficient r in the PML. This coefficient is allowed to be a function of
the variable x; constant, linear or quadratic ‘absorbing functions’ are the typical choices (see, for instance,
[6,8,13]). In our case, we will allow for any arbitrary non-negative absorbing function.

The deduction of the PML equations is nowadays well known (see, for instance, Section 3.3.4 in [24]). In
our case, the amplitudes of the pressure waves in the physical domain, pF, and in the PML, pA, are the solution
of the following equations:
DpF þ k2pF ¼ 0; 0 < x < a;
1
c

o
ox

1
c

opA

ox

� �
þ o2pA

oy2 þ k2pA ¼ 0; a < x < a�;

pFð0; yÞ ¼ eiky y ;

pFða; yÞ ¼ pAða; yÞ;
opF

ox ða; yÞ ¼ 1
cðaÞ

opA

ox ða; yÞ;
pAða�; yÞ ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:
with
cðxÞ ¼
1; if 0 < x < a;

1þ i
x rðxÞ; if a 6 x < a�:

�

x = 0 x = a x = a*

PMLq

Fig. 1. PML in the x-direction for plane waves with oblique incidence.
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To solve this problem, we follow [12] and introduce the complex change of variable
x̂ðxÞ ¼
Z x

0

cðsÞds ¼ xþ i

x

Z x

a
rðsÞds; x 2 ½a; a�Þ: ð2:2Þ
Thus
ox̂
ox
¼ c and

o

ox̂
¼ 1

c
o

ox
:

Hence, if we denote p̂Aðx̂; yÞ ¼ pAðx; yÞ, then we have that
1

c
o

ox
1

c
pA

ox

� �
þ o

2pA

oy2
þ k2pA ¼ 0 () o

2p̂A

ox̂2
þ o

2p̂A

oy2
þ k2p̂A ¼ 0:
Therefore, the solution of the PML problem can be written as superposition of plane waves:
pFðx; yÞ ¼ ðIeikxx þ RFe�ikxxÞeiky y ; x 2 ð0; aÞ;
p̂Aðx̂; yÞ ¼ ðT eikxx̂ þ RAe�ikxx̂Þeikyy ; x 2 ½a; a�Þ;

�

where I is the amplitude of the incident wave, T that of the wave transmitted to the PML, and RF and
RA are the amplitudes of the reflected waves in the physical domain and in the absorbing layer,
respectively.

By substituting (2.2) in the last equation, we can write the solution in the absorbing layer in the following
equivalent form:
pAðx; yÞ ¼ T eikxxe
�cos h

c

R x

a
rðsÞ ds þ RAe�ikxxe

cos h
c

R x

a
rðsÞ ds

	 

eiky y :
Next, from the boundary condition at x = 0, we obtain
I ¼ 1� RF:
On the other hand, from the transmission conditions at x = a, we have
RF ¼ RA and I ¼ T :
Notice that the latter implies that no spurious reflections arise at x = a (which is the main feature of the PML
techniques); the terms involving RF and RA arise as a consequence of the waves reflected at x = a*. Finally, the
homogeneous Dirichlet boundary condition at x = a* yields
RA ¼
e2ikxa�

e2ikxa� � e
2 cos h

c

R a�

a
rðsÞ ds

: ð2:3Þ
Summarizing, we have obtained the following analytical expression for the solution of the PML problem
above:
pFðx; yÞ ¼ ½ð1� RAÞeikxx þ RAe�ikxx�eiky y ; x 2 ð0; aÞ;

pAðx; yÞ ¼ ð1� RAÞeikxxe
�cos h

c

R x

a
rðsÞ ds þ RAe�ikxxe

cos h
c

R x

a
rðsÞ ds

	 

eiky y ; x 2 ½a; a�Þ:

8<
:

The expression (2.3) for RA shows that the larger the integral
R a�

a rðsÞds, the closer RA to zero and, conse-
quently, the closer pF to the solution p of problem (2.1) in the physical domain. Indeed, straightforward com-
putations lead to
Z a

0

jpðx; yÞ � pFðx; yÞj
2dx ¼ jRAj2

2kxa� sinð2kxaÞ
kx

:

Classical PML techniques rely on taking a bounded absorbing function r, such that its integral be sufficiently
large. We propose instead to use an unbounded r such that
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Z a�

a
rðsÞds ¼ þ1:
In this case, RA = 0 and, consequently, the resulting pF will coincide exactly with the solution p of problem
(2.1) in the physical domain.

3. The time-harmonic acoustic scattering problem

We deal with the time-harmonic acoustic scattering problem in an unbounded exterior 2D domain. Let X
be a bounded domain of R2 occupied by an obstacle to the propagation of acoustic waves; we assume the
obstacle has a totally reflecting boundary C, with outer normal unit vector n (see Fig. 2). Our goal is to solve
the following exterior Helmholtz problem with Neumann boundary data:
Dp þ k2p ¼ 0 in R2 n X;
op
on
¼ g on C;

lim
r!1

ffiffi
r
p op

or � ikp
� �

¼ 0:

8>><
>>:

ð3:1Þ
Once more, p is the unknown amplitude of the pressure wave and k = x/c is the wave number, with x being
the angular frequency of the waves and c the sound speed of the fluid in the exterior domain.

We introduce perfectly matched layers (PML) on the x and y directions to truncate the unbounded domain,
as shown in Fig. 3. The inner rectangle contains the obstacle X as well as the physical domain XF, i.e., the
subdomain occupied by the fluid surrounding the obstacle where we are interested in computing the solution
of (3.1).

We use the notation introduced in Fig. 3. In particular, XA denotes the absorbing layer, CI the interface
between the physical domain and the layer, CD the outer boundary, and m = (mx,my) the unit normal vector
to CI outward to XF.

We consider now variable absorption coefficients in the PML, rx and ry, acting on the vertical and hori-
zontal layers, respectively; moreover, both absorption coefficients act in the corner layers. These coefficients,
rx and ry, are allowed to be functions of x and y, respectively. Although constant, linear or quadratic func-
tions are the typical choices, we proceed as in the previous section, and allow for arbitrary non-negative
absorbing functions rx(jxj) and ry(jyj).
n

R2

Fig. 2. Two-dimensional unbounded domain.
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Fig. 3. Cartesian PML on a two-dimensional domain.
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The amplitudes of the pressure waves in the physical domain, pF, and in the PML, pA, are the solution of
the following equations (see, for instance, [13]):
DpF þ k2pF ¼ 0 in XF;

1
cx

o
ox

1
cx

opA

ox

� �
þ 1

cy

o
oy

1
cy

opA

oy

� �
þ k2pA ¼ 0 in XA;

opF

on
¼ g on C;

pF ¼ pA on CI;
opF

omx
þ opF

omy
¼ 1

cx

opA

omx
þ 1

cy

opA

omy
on CI;

pA ¼ 0 on CD;

8>>>>>>>>>><
>>>>>>>>>>:

ð3:2Þ
where
cxðxÞ ¼
1; if jxj < a;

1þ i
x rxðjxjÞ; if a 6 jxj < a�;

�

and
cyðyÞ ¼
1; if jyj < b;

1þ i
x ryðjyjÞ; if b 6 jyj < b�:

�

The main goal of this paper is to determine how to choose the absorbing functions rx and ry, so that pF

be an approximation as close as possible to the solution p of problem (3.1) in the physical domain.
According to the results of the previous section, the natural candidates are unbounded functions rx

and ry such that
Z a�

a
rxðsÞds ¼ þ1 and

Z b�

b
ryðsÞds ¼ þ1:
4. Finite element discretization

In this section we describe a finite element method for the numerical solution of (3.2) and show that the
resulting discrete problem is well posed only for certain unbounded absorbing functions. This will lead to
additional constraints on rx and ry.

We consider a partition in triangles of the physical domain XF and a partition in rectangles of the
absorbing layer XA, matching on the common interface CI as shown in Fig. 4. As usual, h denotes the
mesh-size.

The reason why we use such hybrid meshes is that triangles are more adequate to fit the boundary of the
obstacle, whereas rectangles will allow us to compute explicitly the integrals involving the absorbing function
that will appear in the elements in the layer. This is not strictly necessary, since these integrals can also be effi-
ciently computed by means of standard quadrature rules as shown in Appendix A. However, in this paper, we
will mainly consider exact integration to be able to assess the accuracy of the proposed PML independently of
quadrature errors.
D

I

A

F

Fig. 4. Hybrid mesh on PML and physical domain.
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We will compute approximations ph
F and ph

A of the pressure amplitude in the physical domain and in the
absorbing layer, respectively, by using linear triangular finite elements for the former and bilinear rectangular
finite elements for the latter. The degrees of freedom defining the finite element solution are the values of ph

F

and ph
A at the vertices of the elements. Notice that because of the transmission condition pF = pA on CI, the

values of ph
F and ph

A must coincide at the vertices on the interface.
Moreover, we impose the Dirichlet boundary condition ph

A ¼ 0 on CD on the finite element solution. Hence,
ph

A does not have degrees of freedom on the outer boundary. This fact will be essential for the resulting discrete
problem to be well posed.

Standard arguments in this finite element framework lead to the following discrete problem from the weak
formulation of problem (3.2):
Z

XF

rph
F � r�qh dxdy �

Z
XF

k2ph
F�qh dxdy þ

Z
XA

cy

cx

oph
A

ox
o�qh

ox
dxdy

þ
Z

XA

cx

cy

oph
A

oy
o�qh

oy
dxdy �

Z
XA

k2cxcyph
A�qh dxdy ¼

Z
C

g�qh ds;
for all functions qh, continuous in XF [ XA, piecewise linear in XF, piecewise bilinear in XA, and vanishing on
CD.

Once the discrete problem is written in matrix form, it yields a system of linear equations whose unknowns
are the nodal values of ph

F and ph
A. The entries of the system matrix are computed by assembling the element

matrices; in particular, the following ones involve the unbounded absorbing functions:
Z
K

cy

cx

oNi

ox
oNj

ox
dxdy;

Z
K

cx

cy

oNi

oy
oNj

oy
dxdy; and

Z
K

k2cxcyN iN j dxdy; ð4:1Þ
with K being a rectangular element in XA and {Ni} the nodal finite element basis.
For the discrete problem to be well posed, it is necessary that all the integrals above be finite, what is not

trivial since they involve singular functions whenever K is a rectangle with an edge lying on the outer boundary
CD.

For instance, consider the element K shown in Fig. 5 (the forthcoming arguments and conclusions hold also
true for all other elements with edges lying on CD). Notice that, since ph

A vanishes at the vertices on CD, we
only need to compute in this element the integrals (4.1) for the nodal functions N1 and N2 associated with
the vertices denoted by P1 and P2, respectively.

These functions are given by
N 1ðx; yÞ ¼
ðx� a�Þðy � b2Þ

hxhy
; N 2ðx; yÞ ¼ �

ðx� a�Þðy � b1Þ
hxhy

;

and their partial derivatives by
oN 1

ox
ðx; yÞ ¼ y � b2

hxhy
;

oN 2

ox
ðx; yÞ ¼ � y � b1

hxhy
;

oN 1

oy
ðx; yÞ ¼ x� a�

hxhy
;

oN 2

oy
ðx; yÞ ¼ � x� a�

hxhy
:

D

a*a* hx

hy

hx

K

P2

P1

b2

b1

Fig. 5. Finite element with an edge lying on CD.
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Therefore, the integrals in (4.1) can be written as follows:
Z
K

cy

cx

oN i

ox
oN j

ox
dxdy ¼ � 1

h2
xh2

y

Z b2

b1

cyðyÞðy � bjÞðy � biÞdy
Z a�

a��hx

dx
cxðxÞ

; ð4:2Þ

Z
K

cx

cy

oN i

oy
oN j

oy
dxdy ¼ � 1

h2
xh2

y

Z b2

b1

dy
cyðyÞ

Z a�

a��hx

cxðxÞðx� a�Þ2 dx; ð4:3Þ

Z
K

cxcyN iNj dxdy ¼ � 1

h2
xh2

y

Z b2

b1

cyðyÞðy � bjÞðy � biÞdy
Z a�

a��hx

cxðxÞðx� a�Þ2 dx: ð4:4Þ
We assume singularities of power type for the absorbing functions:
rxðxÞ ¼ Oðða� � xÞ�aÞ as x! a�; ryðyÞ ¼ Oððb� � yÞ�aÞ y ! b�: ð4:5Þ

Notice that the constraint that rx and ry have unbounded integrals holds true if and only if a P 1.

From the definitions of cx and cy we have that cxðxÞ ¼ Oðða� � jxjÞ�aÞ and cyðyÞ ¼ Oððb� � jyjÞ�aÞ. More-
over, jcxjP1 and jcyjP1 and, hence, the integrals of 1/cx(x) and 1/cy(y) are always finite.

For an element K as that in Fig. 5, cy is bounded in the interval [b1,b2] and, consequently, the integrals
involving cy(y) are also finite. Finally, for the integral involving cx(x) we have
Z a�

a��h
cxðxÞðx� a�Þ2 dx ¼

Z a�

a��h
Oðða� � xÞ2�aÞdx <1 () a < 3:
As a consequence of this analysis, we will restrict our choice of rx and ry as in (4.5) to exponents a satisfying
1 6 a < 3.
5. Determination of the absorbing function

In this section we report the numerical experimentation performed to determine the most convenient
unbounded absorbing functions. With this purpose, we have applied our PML method with different rx

and ry to a scattering problem with known analytical solution and compared the accuracy of the numerical
results.

Consider problem (3.1) where the obstacle X is the unit circle centered at the origin. Given any inner point
(x0,y0) of this circle, it is well known that the function
pðx; yÞ ¼ i

4
H ð1Þ0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ

2
q� �
satisfies the first and third equations of (3.1). Therefore, if we take g = op/on, then p is the unique solution of
this problem.

In our experiments we have taken x0 = 0.5 m, y0 = 0, and k = x/c, with c = 340 m/s and different values of
the frequency x. For our computational domain we have taken a = b = 2.0 m and a* = b* = 2.25 m (see
Fig. 6).

We have used uniform refinements of the mesh shown in Fig. 6; the number N of elements through the
thickness of the PML is used to label each mesh.

To measure the accuracy we have computed the relative error in the L2-norm in XF:
Error ¼

R
XF

ph
F � p

�� ��2 dxdy
� �1=2

R
XF
jpj2 dxdy

� �1=2
; ð5:1Þ
where ph
F is the numerical solution in the physical domain and p the analytical solution.

According to the results of the previous section, it is enough to restrict the analysis to absorbing functions
satisfying (4.5) with 1 6 a < 3. We have considered the integer powers: a = 1 and a = 2. In particular, we have
tested functions of the following type, where b is a free parameter to be fitted:
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x 0 = 0.5 m

a* = 2.25 m

a = 2 m

b* = 2.25 m

b = 2 m

N = 2

Fig. 6. Domains and mesh in the scattering problem.
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� A. rxðxÞ ¼
b

a� � x
; ryðyÞ ¼

b
b� � y

;

� B. rxðxÞ ¼
b

� 2
; ryðyÞ ¼

b
� 2

:

ða � xÞ ðb � yÞ
Notice that, in both cases, rx(a) 6¼ 0 and ry(b) 6¼ 0. Hence, the corresponding coefficients cx and cy will be
discontinuous. To avoid eventual side effects of these discontinuities in the coupling conditions on CI, we have
also considered functions of the following type, which yield continuous cx and cy:

� C. rxðxÞ ¼
b
� � b

� ; ryðyÞ ¼
b
� � b

� ;

a � x a � a b � y b � b
� D. rxðxÞ ¼
b

� 2
� b

� 2
; ryðyÞ ¼

b
� 2

� b
� 2

:

ða � xÞ ða � aÞ ðb � yÞ ðb � bÞ
In each case, we have fitted the parameter b so as to minimize the error. Figs. 7–12 show the results
obtained with each type of absorbing functions and a range of values of b. We have used three meshes with
refinement levels N = 2, 4, and 8, which have 464, 1720, and 6768 vertices, respectively. We report the results
obtained with two frequencies: x = 250 rad/s and x = 750 rad/s.

We report in Table 1 the minimal relative errors and the optimal values of b determined for each type of
absorbing function and each of the three meshes. It can be clearly seen from Table 1 that the smallest errors
are always attained for a function of type A with the parameter b � c. To allow for comparison, we also
include in Table 1 the errors for this choice; namely,
rxðxÞ ¼
c

a� � x
; ryðyÞ ¼

c
b� � y

: ð5:2Þ
Let us remark that, for each mesh, the CPU time needed to solve the problem is essentially the same for the
four types of absorbing functions. The condition numbers of the system matrices remain basically of the same
order of magnitude for all the choices, too.

As a definite conclusion of this experimentation, we propose to use the absorbing functions (5.2). Notice
that an additional advantage of this proposal is that the resulting PML method does not need of any param-
eter to be determined.

To assess the order of convergence of the proposed numerical method, we show in Fig. 13 the error curves
(log–log plots of errors versus mesh-size) for x = 250 rad/s and x = 750 rad/s. It can be seen from this figure
that an order of convergence Oðh2Þ is achieved. Let us recall that this is the optimal order for the used finite
elements in L2-norm.
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Fig. 7. Relative errors for PML with different unbounded absorbing functions. Mesh: N = 2; x = 250 rad/s.
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Fig. 8. Relative errors for PML with different unbounded absorbing functions. Mesh: N = 2; x = 750 rad/s.
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Fig. 9. Relative errors for PML with different unbounded absorbing functions. Mesh: N = 4; x = 250 rad/s.
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To end this section, we show in Fig. 14 the real and imaginary parts of the solution computed with the pro-
posed PML method for the mesh corresponding to N = 8 and x = 750 rad/s. The solution is plotted in the
physical domain and in the PML.

6. Comparison with classical absorbing functions

The aim of this section is to compare the proposed unbounded absorbing function (5.2) with the most com-
petitive classical choice: quadratic functions of the form
rxðxÞ ¼ r�ðx� aÞ2 and ryðyÞ ¼ r�ðy � bÞ2; ð6:1Þ
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Fig. 10. Relative errors for PML with different unbounded absorbing functions. Mesh: N = 4; x = 750 rad/s.
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Fig. 11. Relative errors for PML with different unbounded absorbing functions. Mesh: N = 8; x = 250 rad/s.
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Fig. 12. Relative errors for PML with different unbounded absorbing functions. Mesh: N = 8; x = 750 rad/s.
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where r* is a parameter to be determined. For the comparison we have used the same numerical test as in the
previous section.

When these quadratic absorbing functions are used, the standard procedure to minimize the spurious reflec-
tions produced at the outer boundary of the PML consists of taking large values for r*. Notice that this agrees
with the analysis in Section 2. However, larger values of r* lead to larger discretization errors. Therefore, r*

cannot be chosen arbitrarily large because, otherwise, the discretization errors would be dominant, deteriorat-
ing the overall accuracy of the method.



Table 1
Minimal errors and optimal values of the parameter b for PML with different unbounded absorbing functions

Mesh Type x = 250 rad/s x = 750 rad/s

b Error (%) b Error (%)

N = 2 A 1.2 c 0.646 1.1 c 1.696
B 2.2 c 2.160 1.8 c 2.305
C 0.9 c 7.646 0.7 c 5.318
D 14.4 c 14.995 11.8 c 9.739

(5.2) c 0.763 c 1.700

N = 4 A 1.0 c 0.131 1.1 c 0.437
B 2.6 c 0.367 3.4 c 0.474
C 1.1 c 2.113 0.8 c 1.411
D 4.0 c 4.297 3.2 c 2.729

(5.2) c 0.131 c 0.447

N = 8 A 1.0 c 0.029 1.2 c 0.101
B 2.8 c 0.070 2.6 c 0.111
C 1.1 c 0.589 0.9 c 0.365
D 7.6 c 0.957 6.8 c 0.602

(5.2) c 0.029 c 0.109
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As shown in [14], for a given problem and a given mesh there is an optimal value of r* leading to minimal
errors. Unfortunately, such optimal value depends strongly on the problem data as well as on the particular
mesh. Thus, in practice, it is necessary to find in advance a reasonable value of r*. No theoretical procedure to
tune this parameter is known to date. Some efforts have been done in [32], but the dependency of r* with
respect to the mesh has not been avoided.

Let us emphasize that a benefit of our proposed PML strategy is that it does not need of any parameter to
be fitted.

In Table 2, we compare the errors of the PML method with the unbounded absorbing functions (5.2) and
with the quadratic absorbing functions (6.1). For the latter, we have used the optimal value of r*, which is also
reported in Table 2. We also include in the table the condition number j of the system matrix for each discrete
problem.
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Fig. 13. Error curves of the PML method with absorbing functions (5.2).



Fig. 14. Solution of the scattering problem computed by the PML method with absorbing functions (5.2). Mesh N = 8; x = 750 rad/s.
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A significant advantage of the proposed unbounded absorbing functions (5.2) can be clearly appreciated
from Table 2. This is particularly remarkable for lowest frequencies, but the errors with the quadratic absorb-
ing functions are larger in all cases, even though the optimal value of r* has been used. On the other hand, in
spite of the singular character of the unbounded functions, the condition numbers of the resulting system
matrices are essentially of the same order as those of the quadratic functions.

On the other hand, Table 2 also shows that the optimal value of r* strongly depends on the problem data
(the frequency x in this case) and the mesh. The errors and the condition numbers would be significantly lar-
ger if any other value than the optimal r* were used. This can be appreciated from Figs. 15 and 16, where the
relative error and the condition number are respectively plotted as functions of r*, for the mesh corresponding
to N = 4 and x = 750 rad/s.

As a conclusion, the proposed PML method with unbounded absorbing function (5.2) clearly beats the
classical choice of bounded absorbing functions. Moreover, it overcomes the problem of determining optimal
parameters.
Table 2
Comparison of PML methods with unbounded and quadratic absorbing functions

x (rad/s) Mesh Unbounded (5.2) Quadratic (6.1)

Error (%) j r* Error (%) j

250 N = 2 0.763 6.7e + 02 22.28 c 11.644 4.7e + 02
N = 4 0.131 5.1e + 03 29.57 c 3.675 5.0e + 03
N = 8 0.029 4.1e + 04 38.37 c 1.134 4.6e + 04

750 N = 2 1.700 1.1e + 02 27.67 c 7.602 1.1e + 02
N = 4 0.447 7.0e + 02 35.52 c 2.291 9.4e + 02
N = 8 0.109 5.6e + 03 43.49 c 0.698 8.2e + 03

1250 N = 2 6.958 2.7e + 02 27.89 c 11.620 2.9e + 02
N = 4 1.946 1.1e + 03 36.94 c 3.336 1.7e + 03
N = 8 0.430 2.3e + 03 45.70 c 0.919 1.5e + 03
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7. Numerical tests

In this section, we report the results obtained by applying the proposed PML strategy based on the non-
integrable absorbing function (5.2) to solve two ‘real life’ Helmholtz problems.

The first test is the scattering of an incident plane wave on the annular obstacle shown in Fig. 17. The wave
number has been taken k = 2p and the acoustic speed c = 340 m/s.

We have used our PML method on the two embedded square domains shown in Figs. 18 and 19. Therefore,
we have been able to compare the numerical results as a mean of assessing the accuracy of the method, since
an analytical solution of this problem is not available.

We have used uniform refinements of the meshes shown in Figs. 18 and 19, with 21160 triangles and 3328
rectangles for the smaller domain, and with 64680 triangles and 5888 rectangles for the larger.

In Figs. 20 and 21 we show the real and imaginary parts, respectively, of the computed solutions in both
domains. It can be seen that both solutions are almost identical on the common part of the physical domains.
Indeed, the relative difference in L2-norm (which is defined analogously to (5.1)) is only 0.233%. Therefore, the
solution computed in the smaller domain (and consequently with less computational effort) can be safely used.



.

Fig. 17. Annular obstacle of the scattering problem.

7 m 0.25 m 

Fig. 19. Larger domain and coarse mesh for the scattering problem.
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In the second test we have simulated the scattering of waves generated by a monopole (i.e., a Dirac’s delta
source term). We have used the same annular obstacle and square domains as in the previous test, with the
monopole located at the center of the squares. We have also used the same meshes, wave number, and acoustic
speed.

The computed solutions are shown in Figs. 22 and 23. Once more, both solutions are practically indistin-
guishable in the common part of the physical domains. In this case, the relative difference in L2-norm is only
0.184%.
3.55m 0.255m Fig. 18. Smaller domain and coarse mesh for the scattering problem.



Fig. 20. Reflected wave field generated by an incident plane wave. Real part.

Fig. 21. Reflected wave field generated by an incident plane wave. Imaginary part.
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Fig. 22. Wave field generated by a monopole. Real part.

Fig. 23. Wave field generated by a monopole. Imaginary part.
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8. Conclusions

We have introduced a PML method based on a non-integrable absorbing function for the numerical solu-
tion of time-harmonic problems in unbounded domains. We have shown that this method is able to absorb
plane waves with arbitrary incidence angle without any spurious reflection.

We have compared the performance of different non-integrable absorbing functions leading to well posed
finite element discretizations. The comparison allow us to choose a particularly simple one, which only
depends on the acoustic speed. Therefore, we have obtained a PML method free of unphysical parameters.

We have shown that the proposed method leads to significantly smaller errors than the classical ones based
on bounded absorbing functions. To assess the efficiency of our approach, we have applied it to solve some
realistic problems, obtaining very good results even with thin absorbing layers close to the obstacles.

As shown in Appendix A, the method is very easy to implement. The integrals in the PML involving the
unbounded absorbing function can be computed either explicitly or by means of standard quadrature rules.
Let us emphasize that, if quadrature rules are chosen, then there is no need of using hybrid meshes with tri-
angles in the region of interest and rectangles in the PML. A thorough numerical experimentation to validate
the proposed PML method on purely triangular meshes will be reported somewhere else.

The method can be readily extended to three-dimensional problems and different coordinates (Cartesian,
spherical, etc.). However, many subjects of further research remain open. In particular, a detailed analysis
of the proposed PML technique including error estimates for its numerical solution and its application to
problems in the time domain.
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Appendix A. Computation of the element matrices

Our choice of absorbing functions,
rxðxÞ ¼
c

a� � x
; ryðyÞ ¼

c
b� � y

;

allows the explicit computation of integrals like those in (4.1). Although such explicit computation is not indis-
pensable, it avoids the use of quadrature rules and their inherent truncation errors.

As an example of explicit computation, consider the integrals (4.2)–(4.4) over an element K as that shown in
Fig. 5. In this case, we have to compute four different integrals:
Z a�

a��hx

cxðxÞðx� a�Þ2 dx;
Z a�

a��hx

dx
cxðxÞ

;

Z b2

b1

cyðyÞðy � bjÞðy � biÞdy;
Z b2

b1

dy
cyðyÞ

:

All the integrals that appear in the computation of the element matrices for any other element K in XA are
essentially equal to one of these four.

The integrals involving cx are computed as follows:
Z a�

a��hx

cxðxÞðx� a�Þ2 dx ¼
Z a�

a��hx

1þ i

x
c

ða� � xÞ

	 

ðx� a�Þ2 dx ¼ h3

x

3
� i

c
x

h2
x

2

and
 Z a�

a��hx

dx
cxðxÞ

¼
Z a�

a��hx

xða� � xÞ
xða� � xÞ þ ic

dx ¼ hx þ
ic
x

log
ic

xhx þ ic

� �
:



Table A.1
Comparison of quadrature rules using PML with unbounded absorbing functions

x (rad/s) Mesh Gauss–Legendre Exact integration

Four nodes Nine nodes

250 N = 2 0.763689 0.770405 0.763485
N = 4 0.130572 0.130413 0.130580
N = 8 0.028858 0.028755 0.028860

750 N = 2 1.699869 1.699611 1.699889
N = 4 0.446922 0.446910 0.446922
N = 8 0.109444 0.109467 0.109443

1250 N = 2 6.957597 6.958152 6.958012
N = 4 1.946417 1.946320 1.946313
N = 8 0.429920 0.429913 0.429912
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The computation of the integrals involving cy depend on the location of the element K. If �b 6 b1 < b2 6 b,
then cy = 1 and the integrals are trivial. If b 6 b1 < b2 6 b*, then
Z b2

b1

dy
cyðyÞ

¼
Z b2

b1

xðb� � yÞ
xðb� � yÞ þ ic

dy ¼ hy þ
ic
x

log
xðb� � b2Þ þ ic
xðb� � b1Þ þ ic

� �
and
 Z b2

b1

cyðyÞðy � bjÞðy � biÞdy ¼
Z b2

b1

ðy � bjÞðy � biÞdy þ i
x
c

Z b2

b1

ðy � bjÞðy � biÞ
b� � y

dy:
The first integral above is trivial, whereas for the second one straightforward computations lead to
Z b2

b1

ðy � bjÞðy � biÞ
b� � y

dy ¼ hy

2
ð2b� � b2 � b1Þ � hyð2b� � bi � bjÞ þ ðb� � bjÞðb� � biÞ log

b� � b1

b� � b2

� �
:

Similar results are valid if �b* 6 b1 < b2 6 �b.
Alternatively, all these integrals can be computed using standard quadrature rules. In principle, these rules

could lead to large truncation errors due to the singular character of the unbounded absorbing functions.
However, our preliminary experiments show that the effect of numerical quadrature does not seem to modify
significantly the accuracy of the proposed PML method.

To show this we have solved the numerical test from Section 5 with the integrals computed by Gauss–
Legendre rules with four and nine nodes. We report in Table A.1 the relative errors of the solutions computed
with each rule and with exact integration.

It can be clearly seen that the errors in the numerical integration are negligible. Moreover, the four-nodes
rule shows a slightly better performance, which agrees with the fact that low-order integration schemes are
preferable for singular integrands.
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